3 research outputs found

    Ransomware Detection and Classification Strategies

    Full text link
    Ransomware uses encryption methods to make data inaccessible to legitimate users. To date a wide range of ransomware families have been developed and deployed, causing immense damage to governments, corporations, and private users. As these cyberthreats multiply, researchers have proposed a range of ransomware detection and classification schemes. Most of these methods use advanced machine learning techniques to process and analyze real-world ransomware binaries and action sequences. Hence this paper presents a survey of this critical space and classifies existing solutions into several categories, i.e., including network-based, host-based, forensic characterization, and authorship attribution. Key facilities and tools for ransomware analysis are also presented along with open challenges.Comment: 9 pages, 2 figure

    IoT Threat Detection Testbed Using Generative Adversarial Networks

    Full text link
    The Internet of Things(IoT) paradigm provides persistent sensing and data collection capabilities and is becoming increasingly prevalent across many market sectors. However, most IoT devices emphasize usability and function over security, making them very vulnerable to malicious exploits. This concern is evidenced by the increased use of compromised IoT devices in large scale bot networks (botnets) to launch distributed denial of service(DDoS) attacks against high value targets. Unsecured IoT systems can also provide entry points to private networks, allowing adversaries relatively easy access to valuable resources and services. Indeed, these evolving IoT threat vectors (ranging from brute force attacks to remote code execution exploits) are posing key challenges. Moreover, many traditional security mechanisms are not amenable for deployment on smaller resource-constrained IoT platforms. As a result, researchers have been developing a range of methods for IoT security, with many strategies using advanced machine learning(ML) techniques. Along these lines, this paper presents a novel generative adversarial network(GAN) solution to detect threats from malicious IoT devices both inside and outside a network. This model is trained using both benign IoT traffic and global darknet data and further evaluated in a testbed with real IoT devices and malware threats.Comment: 8 pages, 5 figure

    Ransomware Detection Using Federated Learning with Imbalanced Datasets

    Full text link
    Ransomware is a type of malware which encrypts user data and extorts payments in return for the decryption keys. This cyberthreat is one of the most serious challenges facing organizations today and has already caused immense financial damage. As a result, many researchers have been developing techniques to counter ransomware. Recently, the federated learning (FL) approach has also been applied for ransomware analysis, allowing corporations to achieve scalable, effective detection and attribution without having to share their private data. However, in reality there is much variation in the quantity and composition of ransomware data collected across multiple FL client sites/regions. This imbalance will inevitably degrade the effectiveness of any defense mechanisms. To address this concern, a modified FL scheme is proposed using a weighted cross-entropy loss function approach to mitigate dataset imbalance. A detailed performance evaluation study is then presented for the case of static analysis using the latest Windows-based ransomware families. The findings confirm improved ML classifier performance for a highly imbalanced dataset.Comment: 6 pages, 4 figures, 3 table
    corecore